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Extended defects in graphene, such as linear edges, break the translational invariance and can also have an
impact on the symmetries specific to massless Dirac-type quasiparticles in this material. The paper examines
the consequences of a broken Dirac fermion parity in the framework of the effective boundary conditions
varying from the Berry-Mondragon mass confinement to a zigzag edge. The parity breaking reflects the
structural sublattice asymmetry of zigzag-type edges and is closely related to the previously predicted time-
reversal symmetric edge states. We calculate the local and global densities of the edge states and show that they
carry a specific polarization resembling to some extent that of spin-polarized materials. The lack of the parity
leads to a non-analytical particle-hole asymmetry in the edge-state properties. We use our findings to interpret
recently observed tunneling spectra in zigzag-terminated graphene. We also propose a graphene-based tunnel-
ing device where the particle-hole asymmetric edge states result in strongly nonlinear conductance-voltage
characteristics, which could be used to manipulate the tunneling transport.
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I. INTRODUCTION

In condensed-matter systems with nodal fermionic spec-
tra, quantum description of low-energy excitations can re-
semble that of the ultrarelativistic electron. The crystal space
group imposes a generic restriction on such quasiparticles
known as fermion doubling: they come in pairs of opposite
chirality species that can be mapped to the conventional
“right-handed” �RH� and “left-handed” �LH� fermions of the
Dirac theory.1 The most recently studied examples are
graphene, where two distinct Fermi points in the Brillouin
zone give rise to both chiral species,2,3 and two-dimensional
�2D� HgTe quantum wells where spin-orbit coupling effec-
tively results in a pair of the RH and LH fermions at low
energies.4–6 The fermion doubling brings the symmetry with
respect to the exchange of the chiralities, RH�LH, related
to the parity symmetry of the Dirac equation.7 It is of con-
siderable interest to investigate the consequences of the vio-
lation of such a symmetry, since they could be observable in
materials where quasiparticles imitate Dirac electrons. Be-
sides, the Dirac fermion parity is distinct from other discrete
symmetries �e.g., time-reversal invariance� and, therefore,
through its violation one could achieve additional control
over electronic properties of the material.

It has been noticed8,9 that discrete symmetries of a Dirac
fermion system can be broken, along with the translational
invariance, by the boundaries of the system. In this paper we
focus on the parity violation due to such a boundary effect
and suggest how to detect and, possibly, use it in electronic
devices.

Our main assumption is that the boundary does not cause
scattering between the opposite chirality quasiparticles. To
model this we use effective boundary conditions8,9 interpo-
lating between the infinite mass confinement10 and the zigzag
graphene boundary.11,12 The parity breaking occurs as long as
the boundary deviates from the infinite mass confinement
toward the zigzag edge. This is due to the structural sublat-
tice asymmetry: a zigzag-type crystal face has unequal num-

bers of sites from the two sublattices of the honeycomb
structure.9,11 More generally, the parity in this continuum
model cannot be preserved simultaneously with the time-
reversal invariance near the edge of the system. This is
closely related to the existence of time-reversal symmetric,
propagating edge states11 which have become a topic of vig-
orous graphene-related research �see, e.g., Refs. 9 and 13–
21�. The time-reversal symmetry requires that the edge states
from the different valleys propagate in the opposite direc-
tions, forming a Kramers pair at a given energy. As a result,
even in the absence of the intervalley scattering the problem
does not reduce to a single valley, in the sense that the valley
contributions to observables are not identical. For the low-
energy states �imitating the RH and LH fermions�, this im-
plies broken Dirac fermion parity.

We intend to demonstrate several properties of the
broken-parity edge states: �i� non-analytic particle-hole
asymmetry of local and global densities of states, �ii� time-
reversal invariant pseudospin polarization �which in
graphene is associated with the sublattice degree of free-
dom�, and �iii� asymmetric nonlinear bias-voltage depen-
dence of the tunneling conductance.

In view of the progress in experimental control over
graphene edges,22 this material is particularly suitable to test
our findings. Below we discuss in more detail the connection
between our results and the ongoing graphene-related re-
search.

Our finding �i� can be tested by means of scanning tun-
neling spectroscopy �STS� of the density of states �DOS�. In
fact, some STS experiments14,15 have already reported a
particle-hole asymmetric DOS with a peak at −20–50 meV
for monoatomic zigzag graphene edges. By contrast Li et
al.23 have observed a symmetric linear DOS in graphene
bulk. In our model, the crossover from an asymmetric edge
DOS to a symmetric bulk one follows naturally from the
existence of the broken-parity Dirac fermion edge states. The
results of experiments14,15 could therefore provide some evi-
dence for the Dirac fermion parity violation. Such an inter-
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pretation is also supported by the observation that the posi-
tion of the DOS peak in the experiment of Niimi et al.15 can
be described very accurately by our model. This is achieved
by taking into account not only the structural asymmetry but
also a potential-energy difference between the sublattices9

that generates weakly dispersive edge states rather than the
singular zero-energy band.11 It was shown earlier17 that the
next-nearest-neighbor hopping on the honeycomb lattice
could also result in a particle-hole asymmetric edge DOS.
However, this symmetry-breaking mechanism results in the
DOS peak at significantly larger energies, of the order of
next-nearest-neighbor hopping energy �300 meV.

Our result �ii� demonstrates that broken-parity edge states
carry a time-reversal-invariant pseudospin polarization. This
agrees with the general perception that in graphene electronic
properties and those arising from the sublattice degree of
freedom �pseudospin� are interrelated. However, there is a
great deal of uncertainty as to how such a relation can be
studied. The specific feature of our edge problem is that it is
possible to establish a one-to-one correspondence between
the pseudospin polarization and the edge DOS. We suggest
that the pseudospin polarization can be detected via measure-
ments of the electric conductance in lateral tunnel contacts
between zigzag-terminated graphene and a suitably chosen
metallic electrode.

Our proposal is based on finding �iii� that the edge state
�i.e., polarization-dependent� contribution to the conductance
is asymmetric with respect to the bias voltage. Therefore, it
can be separated from the symmetric contribution of the bulk
graphene states. In addition, the edge-state tunnel conduc-
tance turns out to be strongly nonlinear: it exhibits kinklike
switching as the sign of the voltage reverses. Such a behavior
could serve as a prototype for the potentially useful elec-
tronic functionality.

The outline of the paper is as follows. In Sec. II we for-
mulate the boundary problem for the Green’s function of the
Dirac equation and discuss the role of the parity symmetry.
In Sec. III we analyze the local DOS and pseudospin polar-
ization and compare our results for the local DOS with the
experimental data of Niimi et al.15 Section IV describes the
relation between the global edge DOS and pseudospin polar-
ization and their tunneling spectroscopy. Section V summa-
rizes our results and discusses their validity as well as pos-
sible applications.

II. DIRAC FERMIONS IN 2D SEMISPACE: BROKEN
PARITY AND EDGE STATES

Edge-state spectroscopy usually deals with isolated edges
in large samples where finite-size effects are presumably
irrelevant.14,15,22 We model this by considering a boundary
problem for a Dirac fermion retarded Green’s function in a
2D semispace −��x�� and 0�y��:

��I − v�5�p�G��r,r�� = ��r − r�� , �1�

G� = � I + �5

2
�n+ +

I + �5

2
�n−�G��y=0, n�

2 = 1, �2�

with G �y→� being finite. In Eq. �1� p=−i���x ,�y ,0�, � and v
are the 2D momentum operator, energy, and velocity near a
Fermi point. In view of the further analysis of the parity
symmetry, Eqs. �1� and �2� are both expressed in terms of the
chirality �5 and effective spin � through the Dirac matrices:7

�5 = i�0�1�2�3 = �3
� 	0, � = �5�0� = �0

� � , �3�

�0 = − �1
� 	0, � = i�2

� � . �4�

We introduce the two sets of Pauli matrices, 	1,2,3 and �1,2,3,
and the corresponding unit matrices, 	0 ,�0 and I=�0 � 	0. In
graphene, 	1,2,3 represent the two sublattices of the honey-
comb structure, while �1,2,3 act in the valley space. The
eigenstates and eigenvalues ��= �1� of the Hermitian matrix
�5 conventionally define the right-handed �RH, +� and left-
handed �LH, −� quasiparticles.7 In Eqs. �1� and �2� they are
described by the projected Green’s functions 1

2 �I��5�G�.
The boundary condition, Eq. �2�, ensures vanishing of the

particle current across the edge8,9 �i.e., no Klein tunneling24�.
It is diagonal in chirality space with the RH and LH blocks
parametrized by three-dimensional unit vectors, n�=n�, or-
thogonal to the boundary normal.8,9 In graphene, where �
= �1 label the valleys, the case of the zigzag edge corre-
sponds to9

n+ = − n− = ẑ, G� = �5
3G��y=0, �5�

where ẑ is the out-of-plane unit vector. This implies that one
of the sublattice Green’s functions must vanish at the edge,
reflecting the structural sublattice asymmetry of the zigzag
boundary.11 The other nontrivial limit is

n+ = n− = x̂, G� = 
1G��y=0. �6�

It is the infinite mass confinement of Berry and Mondragon10

�x̂ is the unit vector along the edge�. As shown in Ref. 9, the
intermediate case, when n� interpolate between Eqs. �5� and
�6� can be treated as a zigzag edge where the structural sub-
lattice asymmetry coexists with a potential �energy� sublat-
tice asymmetry that could result from electron-electron inter-
actions within atomic distances near the edge.25 This does
not however exhaust the applicability of boundary condition
�2�, since it can be derived from the only requirement that
the Dirac particle current is zero in the normal direction at
the edge.8,9

Unless restricted to the infinite mass confinement case �6�,
the boundary parameters are not identical, n+�n−, which is
verified below on the basis of the time-reversal �T� symmetry
�see Eq. �15��. Therefore, boundary condition �2� �and, in
particular, Eq. �5�� explicitly contains the chirality, �5. This
violates the symmetry under the exchange of the RH and LH
quasiparticles,

G� → �0G��0, �7�

since it reverses the sign of �5 �in contrast, � is even under
such operation�. On the other hand, the RH�LH exchange
is involved in the parity transformation,7
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G��r,r�� → �0G��− r,− r���0, �8�

and in the particle-hole conjugation,

G��r,r�� → − �0G−��r,r���0, �9�

both leaving the Dirac Eq. �1� invariant. Therefore, if bound-
ary condition �2� deviates from the infinite mass confinement
�6�, our boundary problem exhibits no parity invariance and,
in view of Eq. �9�, no particle-hole symmetry. The symmetry
breaking persists in the limit of the zigzag edge, Eq. �5�. We
therefore conclude that the parity breaking is due to the
structural sublattice asymmetry of the zigzag-type lattice
termination.11 For practical calculations, we need to take into
account deviations of n� from ẑ �e.g., due to potential-
energy sublattice asymmetry9�, because it eliminates the
Green’s function singularity at �=0 characteristic to disper-
sionless zero-energy edge states.

The connection between the parity breaking and the exis-
tence of the edge states can be established by explicit calcu-
lation of the Green’s function from Eqs. �1� and �2�. The
calculation details are given elsewhere.20 Here we present
the final result:

G��r,r�� = 	
�=�1,k

� I + ��5

2
��I +

�v
�

�p�
��G��k

�0� �y,y��I + G��k
�3� �y,y��
3�

eik�x−x��

L
, �10�

G��k
�0� �y,y�� =

�

2�2v2q
�e−q�y+y�� − e−q�y−y���

+
q + knz�

2�� − �v�knx��
e−q�y+y��, �11�

G��k
�3� �y,y�� =

k + qnz� − ��nx�/�v
2�� − �v�knx��

e−q�y+y��, �12�

where q=
k2−�2 /�2v2 and k is the wave number. In Eqs.
�11� and �12� the edge states are described by the terms with
the pole at �=�v�knx�. Let us examine, for instance, Eq. �12�
near the pole:

G��k
�3� �y,y�� � −

nz���knz��
� − �v�knx�

�ye
−�knz���y+y��. �13�

Clearly, the pole exists only if the unit step function ��knz��
is nonzero, which determines the spectrum as

��k = �v�knx�, knz� 
 0. �14�

These equations are not yet restricted by the T symmetry.
The T-symmetric spectrum follows from the condition that
both Eqs. �14� are invariant under the simultaneous reversal
of the chirality and wave vector, � ,k→−� ,−k. This imposes
the following restrictions on n�:

nx� = nx, nz� = �nz, n = �nx,0,nz�, n2 = 1, �15�

leaving a single free boundary parameter—the direction of
the unit vector n. The edge-state spectrum is now manifestly
Kramers degenerate and particle-hole asymmetric:9

��k = �v�knx, �knz 
 0. �16�

The role of the parity breaking is quite apparent from the
behavior of the edge-state Green’s function �13�: it vanishes
identically for the infinite mass confinement �nz=0� which
preserves the parity symmetry �see also Eq. �6��.

The knowledge of spectrum �16� is not sufficient to inter-
pret the STS measurements,14,15 as they provide information
on the local DOS rather than dispersion ��k. In the next sec-
tion we use the full Green’s function �10� to calculate the
local DOS of the system. We will see that in addition to the
exponentially localized states �13� there is another type of
edge states decaying algebraically as a consequence of the
lack of the energy gap in the 2D bulk. This distinguishes our
system from, e.g., topological insulators where bulk excita-
tions are fully gapped.4,5,26

III. LOCAL DOS AND PSEUDOSPIN POLARIZATION

A. Particle-hole symmetry and the role of parity

The spectral and pseudospin properties of the system are
interrelated. Let us define the local DOS

����,r� = −
1

2�
Im Tr�I � �5�G��r,r� , �17�

and local pseudospin polarizations

p���,r� = −
1

2�
Im Tr�I � �5�
3G��r,r� �18�

in terms of the RH and LH projections of the Green’s func-
tion, G�. Tunneling spectra are determined by the total local
DOS related to G�0� in Eq. �11�:

���,r� = �+ + �− = −
2

�L
	

�=�1,k
Im G��k

�0� �y,y� . �19�

Likewise, p++ p−=− 1
� Im Tr
3G� is the net pseudospin polar-

ization. It vanishes by T symmetry, since Eq. �15� yields
p−=−p+. As a T-invariant characteristic of the pseudospin
properties, we use the chiral pseudospin polarization �CPP�
related to G�3� in Eq. �12�:

p��,r� = p+ − p−

= −
1

�
Im Tr�5
3G��r,r� = −

2

�L
	

�=�1,k
� Im G��k

�3� �y,y� .

�20�

Integrating over k in Eqs. �19� and �20�, we obtain
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���,y� =
2���

��2v2 − 	
�=�1

����nx�nz��
hv�nx��

�ye
−2y/�v���nz�/nx��� −

���
�2�2v2 	

�=�1
�

0

�/2

d�

nz�
2 cos�2�y

�v
sin �� + �nx�nz� sin � sin�2�y

�v
sin ��

nz�
2 + tan2 �

,

�21�

p��,y� = − 	
�=�1

�nz�����nx�nz��
hv�nx��

�ye
−2y/�v���nz�/nx��� +

���
�2�2v2 	

�=�1
�

0

�/2

d� tan2 �

�nz� cos�2�y

�v
sin �� + nx� sin � sin�2�y

�v
sin ��

nz�
2 + tan2 �

.

�22�
It is now easy to see that the particle-hole symmetry is controlled by the parity. In the broken-parity state with n+�n− given

by Eq. �15�, the summation over chiralities �= �1 in Eq. �21� yields an asymmetric DOS as a function of energy, �:

���,y� =
2���

��2v2 −
2���nxnz�

hv�nx�
�ye

−2y/�v���nz/nx�� −
2���

�2�2v2�
0

�/2

d�

nz
2 cos�2�y

�v
sin �� + nxnz sin � sin�2�y

�v
sin ��

nz
2 + tan2 �

. �23�

The same is true for CPP �22�:

p��,y� = −
2nz���nxnz�

hv�nx�
�ye

−2y/�v���nz/nx�� +
2���

�2�2v2�
0

�/2

d� tan2 �

nz cos�2�y

�v
sin �� + nx sin � sin�2�y

�v
sin ��

nz
2 + tan2 �

. �24�

For comparison, if the parity is preserved for n+=n−, DOS �21� appears to be an even function of energy:

���,y� =
2���

��2v2 −
1

hv�nx�
�ye

−2y/�v���nz/nx�� −
2���nz

2

�2�2v2�
0

�/2

d�

cos�2�y

�v
sin ��

nz
2 + tan2 �

. �25�

However, the requirements for the parity symmetry, n+=n−,
are incompatible with conditions �15� for the T symmetry.
The only exception is the infinite mass confinement limit
nz→0. In literature,11,21,25,27 T symmetry breaking on zigzag
graphene edges has been discussed in connection with their
possible intrinsic magnetism. It is still unclear whether the T
symmetry breaking in the boundary condition Eq. �2� has
anything to do with the edge magnetism. We will therefore
limit our analysis to the T-symmetric case �15�.

B. Energy and position dependence of the local DOS: Analysis

In Fig. 1 we plot the local DOS �23� as a function of
energy � �in eV� and position y �in nm� for the Fermi veloc-
ity v=106 m s−1. These units and parameters are typical for
STS in graphene. Panel �a� shows an asymmetric peak, due
to the edge states, emerging on top of the linear DOS as the
boundary condition varies from the Berry-Mondragon type
�nz=0� to the zigzag type ��nz�→1�. In the latter case, DOS
�23� still fails to recover the particle-hole symmetry because
of the broken parity �see Eq. �5��, which is formally de-
scribed by the singular energy-dependent factor ���nxnz�.
The crossover between the Berry-Mondragon and zigzag
cases can in principle be induced by a staggered mean-field
sublattice potential whose strength is parametrized by the
angle between n and ẑ.9
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FIG. 1. �Color online� Local density of states in units of
3 /4� eV−1 nm−2: �a� vs energy for different nz at y=4 nm; �b� vs
energy at different positions for nz=0.95; �c� vs position for
opposite-sign energies and nz=0.95. Inset: local STS geometry and
orientation of the unit vector n �Eq. �15�� determining boundary
condition �2�. �d� Asymmetric local DOS �������−��−�� vs en-
ergy at y=5 nm for nz=0.95. The data are for v=106 m s−1 and
nx�0.
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For �nz�→1 the edge modes are much slower than the
bulk ones and have a small characteristic energy, ��v /2y
� �nx /nz�. This can explain the observed DOS asymmetry on
the scales of 20–50 meV.15 For nz=0.95, the peak position,
��25 meV, and its overall behavior �panel �b�� agree very
well with the observations �see, e.g., Fig. 5 in Ref. 15�. As
we neglect possible level broadening, the peak looks some-
what higher and narrower than in the experiment. Also, in
agreement with the findings of Li et al.,23 ���� approaches
the symmetric Dirac DOS away from the edge. The position
dependence of the DOS �panel �c�� shows that at the edge �
reaches either a maximum or a minimum depending on the
presence or absence of the exponential term in Eq. �23�
which is controlled only by the sign of �. The Dirac waves,
incident from the bulk and reflected from the edge, interfere
yielding an oscillatory contribution �third term� in DOS �23�,
decaying as y−3/2 on the scale of 10–20 nm. Panel �d� dem-
onstrates similar oscillations in the energy dependence.

C. Local chiral pseudospin polarization

To conclude the analysis of the local properties, in Fig. 2
we plot the CPP given by Eq. �24�. From Fig. 2�a� we see
that the CPP has a purely boundary origin as it decays to zero
in the bulk. Apart from the presence of the oscillations, both
position and energy dependences of the local CPP differ sig-
nificantly from the corresponding behaviors of the local DOS
�cf. Figs. 1�c�, 1�d�, and 2�. Although not obvious in the local
quantities ��� ,y� and p�� ,y�, in the next section we establish
a direct relation between the appropriately defined global
CPP and DOS.

IV. GLOBAL EDGE DOS AND PSEUDOSPIN
POLARIZATION

A. Relation between the edge DOS and pseudospin
polarization

Let us define the DOS and CPP of a finite region of space,
0�y�w, as the following dimensionless integrals:

Ne��,w� = hv�
0

w

dy
���,y� −
2���

��2v2� , �26�

P��,w� = hv�
0

w

dyp��,y� . �27�

In the first equation we subtract the bulk Dirac DOS, so that
Ne�� ,w� contains the contribution of the edge states only. By

contrast to their local counterparts, it is convenient to call
Ne�� ,w� and P�� ,w� the global edge DOS and global CPP,
respectively.

Inserting Eqs. �23� and �24� into Eqs. �26� and �27� and
integrating over position y, we find

Ne��� =
2���nxnz�

�nx�
�1 − e−2w/�v���nz/nx���

−
2nz sgn �

�
�

0

�/2

d�� nz

sin �

sin�2�w

�v
sin ��

nz
2 + tan2 �

+ nx

1 − cos�2�w

�v
sin ��

nz
2 + tan2 �

� , �28�

P��� =
2nz���nxnz�

�nx�
�1 − e−2w/�v���nz/nx���

+
2 sgn �

�
�

0

�/2

d�� nz

sin �

sin�2�w

�v
sin ��

1 + nz
2 cot2 �

+ nx

1 − cos�2�w

�v
sin ��

1 + nz
2 cot2 �

� . �29�

It is instructive to discuss first the limit w→�, when the
integrals in Eqs. �28� and �29� can be evaluated analytically.
In this case the integrals with the rapidly oscillating cosine
function vanish, while those containing the sine function
should be evaluated with care since the ratio
sin� 2�w

�v sin �� /sin � becomes singular, � sgn�����sin �� as
w→�. After integrating with the delta function ��sin ��, we
have

Ne��� =
2���nxnz�

�nx�
− 1 −

2nxnz sgn �

�
�

0

�/2 d�

nz
2 + tan2 �

,

P��� =
2nz���nxnz�

�nx�
+

2nx sgn �

�
�

0

�/2 d�

1 + nz
2cot2 �

.

The remaining integrals are easy to evaluate.28 The results
are

Ne��� =
1 + nz sgn��nx�

�nx�
− 1, �30�

P��� =
sgn��nx� + nz

�nx�
, �P���� =

1 + nz sgn��nx�
�nx�

. �31�

From Eqs. �30� and �31� we find the relation between Ne and
P,

Ne��� = �P���� − 1. �32�

Being a scalar, Ne does not depend on the sign of P which is
reversed under the transformation n→−n.

y(nm)

=0.15 eVε

0
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0.5

25 50

ε=−0.15 eV
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1−1
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−0.5

p b

FIG. 2. �Color online� Chiral pseudospin polarization �a� vs po-
sition and �b� vs energy for nz=0.95 and nx�0.
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According to Eq. �32�, for the zigzag graphene edge �nz�
→1�nx→0� the absolute value of the CPP becomes equal to
the edge DOS:

Ne��� � �P���� �
2���nxnz�

�nx�
. �33�

This means that the CPP can, in principle, be detected
through measurements of the global edge DOS. The latter, in
turn, can be probed by tunneling, as we discuss in the next
subsection. Before going to that question, we wish to point
out that the correlation between P and Ne exists for finite
values of w as well. Figure 3 shows the functions Ne�w� �Eq.
�28�� and P�w� �Eq. �29��, clearly approaching relation �32�
for w�100 nm. Note that the nonoscillatory components of
P and Ne obey relation �32� at much smaller w.

B. Tunneling spectroscopy

Our proposal for tunneling spectroscopy of the global
edge DOS exploits the particle-hole asymmetric non-analytic
energy dependence of Ne��� �Eqs. �30� and �33��. It is essen-
tial that the particle-hole asymmetry persists in the case of
zigzag-terminated graphene ��nz�→1, nx→0� because this
is an experimentally accessible system.

It is known29,30 that a strongly energy-dependent DOS
reflects in the differential electric conductance g�V� of a tun-
nel junction between the system of interest and a metal
where the DOS is almost constant near the Fermi energy.
Here we consider a lateral tunnel contact between a zigzag-
terminated graphene sheet and a metallic film, as shown in
Fig. 4. It is assumed that the voltage drop, V, occurs pre-
dominantly across the tunnel barrier in the contact area,
which determines the junction resistance. Under such condi-
tion, the conductance can be calculated using the tunneling
Hamiltonian approach, which is well described in the litera-
ture �e.g., Ref. 30�, with the following result:

g�V,T� = g0�
−�

�

d�N���
� f�� − eV,T�

��eV�
. �34�

Here N��� is the DOS of graphene in the contact region �dark
gray area in Fig. 4�, f��−eV ,T� is the Fermi-Dirac distribu-

tion of the tunneling quasiparticles at voltage V and tempera-
ture T, and the constant g0 absorbs the energy-independent
parameters of the metal and tunnel barrier. As we are inter-
ested in the low-energy regime V ,T→0, in Eq. �34� we
can neglect inelastic tunneling processes �e.g., phonon
emission�.30

The DOS N��� contains the contributions of both bulk and
edge states. Since the bulk DOS is a symmetric function of
energy ������, it can be eliminated by taking the difference:

�g�V,T� = g�V,T� − g�− V,T�

= g0�
−�

�

d��Ne�− �� − Ne����
� f�� − eV,T�

��
.

�35�

It contains only the particle-hole asymmetric edge DOS,
Ne���, given by Eq. �28�, where w coincides with the width
of the lateral tunnel contact �see Fig. 4�.

In the limit w→�, we use Eqs. �31� and �32� to evaluate
the integral in Eq. �35�:

�g�V,T� = g0�P tanh
eV

2kBT
, �36�

�P = �P��
0 − �P���0 = 2
nz

nx
. �37�

The conductance asymmetry �g�V ,T� reflects the nonequi-
librium quasiparticle accumulation that builds up near the
graphene edge in response to the current flow between the
systems. For �eV�
2kBT the conductance �g�V ,T� saturates
at �g0�P, where �P is the difference in the absolute values
of the CPP for the positive- and negative-energy edge states.
Such a nonlinear behavior can be used to detect the edge
state as well as the existence of the pseudospin polarization.
At zero temperature T=0 the voltage dependence in Eq. �36�
becomes singular ��sgn�eV��. This is specific to the w=�
limit. As shown in Fig. 5, the singularity is smeared due to
finiteness of the contact width, w, so that �g�V ,0� saturates
at voltages larger than the value �w−1. The data in Fig. 5 are

Ne
n =0.92z

Ne
25 50 75 100

0

2

4

5

3

1

n =0.05z w(nm)

P

P

FIG. 3. �Color online� Typical behavior of the global edge DOS,
Ne, and chiral pseudospin polarization, P, as functions of the width,
w �see Eqs. �26�–�29��.

current

current

G

M

w

FIG. 4. Suggested tunneling device for determining the density
of the edge states in graphene. A metallic film �m� is deposited on
top of a zigzag-terminated graphene sheet �g� forming a striplike
lateral contact of width, w. The device resistance is assumed to be
determined by the tunnel barrier �dark gray area� so that the voltage
drop V predominantly occurs between the overlapping parts of M
and G.
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obtained by numerical integration of Eqs. �35� and �28� at
T→0.

V. SUMMARY AND DISCUSSION

We have considered the boundary problem for 2D Dirac
fermions, Eqs. �1� and �2�, in which the time-reversal invari-
ance is preserved at the expense of the Dirac fermion parity.
Using the Green’s function solution, we have shown that the
broken parity manifests itself in the density of the edge states
and their pseudospin polarization, both exhibiting a non-
analytic particle-hole asymmetry. The zigzag graphene edge
with its inherent structural asymmetry is an example of the
realization of the Dirac fermion parity breaking. Taking into
account additionally the potential-energy sublattice asymme-
try near the zigzag edge,9 we obtain the local DOS consistent
with the experimental data of Niimi et al.15 We have also
established a direct correspondence between the pseudospin
polarization and the density of the edge states and suggested
how to detect them in a tunneling experiment. The proposal
relies on the broken particle-hole symmetry resulting in an
asymmetric nonlinear contribution to the conductance, Eq.

�36�, in a tunnel junction between zigzag-terminated
graphene and a metallic film �see Fig. 4�.

It is interesting to discuss possible implementations of the
strong nonlinearity of the conductance, Eq. �36�. We suggest
that it could be used for detecting weak electric signals and
their polarity. The operation of such a device would exploit
the two different states of the tunnel junction corresponding
to the conductance values at positive and negative bias volt-
ages �see also Fig. 5�. Let us assume that the system is ini-
tially in one of these states. Then, under externally induced
change in the bias voltage the system can switch into the
state with the other �lower or higher� value of the conduc-
tance. For the zigzag graphene edge ��nz�→1, nx→0�, the
conductance difference, Eqs. �36� and �37�, is very signifi-
cant and, therefore, should be detectable. The progress in
characterization of graphene edges22 may eventually lead to
more understanding of how the interfaces needed to test our
finding can be fabricated.

We noticed that even though the conductance, Eq. �36�,
vanishes for the Berry-Mondragon confinement10 �nz→0�,
this case is still nontrivial because the pseudospin polariza-
tion P��� �Eq. �32�� is not zero: P���=sgn��nx�. This is con-
firmed by the numerical data for nz=0.05 in Fig. 3. The
nonvanishing P��� comes from the oscillatory �interference�
term in Eq. �22�, decaying as y−1/2 on distances 50–100 nm
�see Fig. 2�a��. For a given chirality �valley�, the long-range
polarization implies violation of the T symmetry on mesos-
copic scales, which may have some connection to recent
studies of the level statistics in graphene quantum dots.31,32

Also, such long-range polarization may coexist with
magnetic correlations predicted for zigzag graphene
edges,11,21,25,27 since they are expected to decay on much
shorter distances.27
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